Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(3): 877-893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214109

RESUMO

A demand for process intensification in biomanufacturing has increased over the past decade due to the ever-expanding market for biopharmaceuticals. This is largely driven by factors such as a surge in biosimilars as patents expire, an aging population, and a rise in chronic diseases. With these market demands, pressure upon biomanufacturers to produce quality products with rapid turnaround escalates proportionally. Process intensification in biomanufacturing has been well received and accepted across industry based on the demonstration of its benefits of improved productivity and efficiency, while also reducing the cost of goods. However, while these benefits have been shown empirically, the challenges of adopting process intensification into industry remain, from smaller independent start-up to big pharma. Traditionally, moving from batch to a process intensification scheme has been viewed as an "all or nothing" approach involving continuous bioprocessing, in which the factors of complexity and significant capital costs hinder its adoption. In addition, the literature is crowded with a variety of terms used to describe process intensification (continuous, periodic counter-current, connected, intensified, steady-state, etc.). Often, these terms are used inappropriately or as synonyms, which generates confusion in the field. Through a detailed review of current state-of-the-art systems, consumables, and process intensification case studies, we herein propose a defined approach in the implementation of downstream process intensification through a standardized nomenclature and viewing it as distinct independent levels. These can function separately as intensified single-unit operations or be built upon by integration with other process steps allowing for simple, incremental, cost-effective implementation of process intensification in the manufacturing of biopharmaceuticals.


Assuntos
Medicamentos Biossimilares , Biotecnologia , Reatores Biológicos , Indústria Farmacêutica , Eficiência
2.
Biotechnol Bioeng ; 119(1): 48-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585736

RESUMO

Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production. We discuss the process economics and the "distributed manufacturing" approach we have taken to provide the vaccine at globally-relevant scale and with international security of supply. Together, these approaches have enabled the largest viral vector manufacturing campaign to date, providing a substantial proportion of global COVID-19 vaccine supply at low cost.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Indústria Farmacêutica/métodos , Desenvolvimento de Vacinas , Animais , Escherichia coli , Geografia , Células HEK293 , Humanos , Pan troglodytes , SARS-CoV-2 , Tecnologia Farmacêutica , Vacinação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...